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1. (D) Each even counting number, beginning with 2, is one more than the pre-
ceding odd counting number. Therefore the difference is (1)(2003) = 2003.

2. (B) The cost for each member is the price of two pairs of socks, $8, and two
shirts, $18, for a total of $26. So there are 2366/26 = 91 members.

3. (D) The total volume of the eight removed cubes is 8× 33 = 216 cubic centime-
ters, and the volume of the original box is 15× 10× 8 = 1200 cubic centimeters.
Therefore the volume has been reduced by

(

216
1200

)

(100%) = 18%.

4. (A) Mary walks a total of 2 km in 40 minutes. Because 40 minutes is 2/3 hr,
her average speed, in km/hr, is 2/(2/3) = 3.

5. (B) Since

0 = 2x2 + 3x− 5 = (2x+ 5)(x− 1) we have d = −5
2
and e = 1.

So (d− 1)(e− 1) = 0.
OR

If x = d and x = e are the roots of the quadratic equation ax2 + bx + c = 0,
then

de =
c

a
and d+ e = − b

a
.

For our equation this implies that

(d− 1)(e− 1) = de− (d+ e) + 1 = −5
2
−
(

−3
2

)

+ 1 = 0.

6. (C) For example, −1♥0 = | − 1 − 0| = 1 6= −1. All the other statements are
true:
(A) x♥y = |x− y| = | − (y − x)| = |y − x| = y♥x for all x and y.
(B) 2(x♥y) = 2|x− y| = |2x− 2y| = (2x)♥(2y) for all x and y.
(D) x♥x = |x− x| = 0 for all x.
(E) x♥y = |x− y| > 0 if x 6= y.

7. (B) The longest side cannot be greater than 3, since otherwise the remaining two
sides would not be long enough to form a triangle. The only possible triangles
have side lengths 1–3–3 or 2–2–3.

8. (E) The factors of 60 are

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60.

Six of the twelve factors are less than 7, so the probability is 1/2.
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9. (A) We have

3

√

x
3

√

x
3

√

x
√
x = (x(x(x · x 1

2 )
1

3 )
1

3 )
1

3

= (x(x(x
3

2 )
1

3 )
1

3 )
1

3

= (x(x · x 1

2 )
1

3 )
1

3

= (x(x
3

2 )
1

3 )
1

3 = (x · x 1

2 )
1

3 = (x
3

2 )
1

3 = x
1

2 =
√
x.

10. (E) If the polygon is folded before the fifth square is attached, then edges a and
a′ must be joined, as must b and b′. The fifth face of the cube can be attached
at any of the six remaining edges.

a

a,a'b
b,b'

b' a'

11. (E) Since the last two digits of AMC10 and AMC12 sum to 22, we have

AMC +AMC = 2(AMC) = 1234.

Hence AMC = 617, so A = 6, M = 1, C = 7, and A+M +C = 6+1+7 = 14.

12. (A) The point (x, y) satisfies x < y if and only if it belongs to the shaded triangle
bounded by the lines x = y, y = 1, and x = 0, the area of which is 1/2. The

ratio of the area of the triangle to the area of the rectangle is 1/2

4
= 1

8
.

y = x 

x 

y 

13. (A) Let a, b, and c be the three numbers. Replace a by four times the sum of
the other two to get

4(b+ c) + b+ c = 20, so b+ c = 4.

Then replace b with 7c to get

7c+ c = 4, so c =
1

2
.
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The other two numbers are b = 7/2 and a = 16, and the product of the three is
16 · 7/2 · 1/2 = 28.

OR

Let the first, second, and third numbers be x, 7x, and 32x, respectively. Then
40x = 20 so x = 1

2
and the product is

(32)(7)x3 = (32)(7)

(

1

8

)

= 28.

14. (A) The largest single-digit primes are 5 and 7, but neither 75 nor 57 is prime.
Using 3, 7, and 73 gives 1533, whose digits have a sum of 12.

15. (C) Of the 100
2
= 50 integers that are divisible by 2, there are b 100

6
c = 16 that

are divisible by both 2 and 3. So there are 50− 16 = 34 that are divisible by 2
and not by 3, and 34/100 = 17/50.

16. (C) Powers of 13 have the same units digit as the corresponding powers of 3;
and

31 = 3, 32 = 9, 33 = 27, 34 = 81, and 35 = 243.

Since the units digit of 31 is the same as the units digit of 35, units digits of
powers of 3 cycle through 3, 9, 7, and 1. Hence the units digit of 32000 is 1, so
the units digit of 32003 is 7. The same is true of the units digit of 132003.

17. (B) Let the triangle have vertices A, B, and C, let O be the center of the circle,
and let D be the midpoint of BC. Triangle COD is a 30–60–90 degree triangle.
If r is the radius of the circle, then the sides of 4COD are r, r/2, and r

√
3/2.

The perimeter of 4ABC is 6
(

r
√

3
2

)

= 3r
√
3, and the area of the circle is πr2.

Thus 3r
√
3 = πr2, and r = (3

√
3)/π.

DC

O
r r 2

3
 2
=
 B

A

r

18. (B) Let a = 2003/2004. The given equation is equivalent to

ax2 + x+ 1 = 0.

If the roots of this equation are denoted r and s, then

rs =
1

a
and r + s = −1

a
,
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so
1

r
+
1

s
=

r + s

rs
= −1.

OR

If x is replaced by 1/y, then the roots of the resulting equation are the reciprocals
of the roots of the original equation. The new equation is

2003

2004y
+ 1 + y = 0 which is equivalent to y2 + y +

2003

2004
= 0.

The sum of the roots of this equation is the opposite of the y-coefficient, which
is −1.

19. (C) First note that the area of the region determined by the triangle topped by
the semicircle of diameter 1 is

1

2
·
√
3

2
+
1

2
π

(

1

2

)2

=

√
3

4
+
1

8
π.

The area of the lune results from subtracting from this the area of the sector of
the larger semicircle,

1

6
π(1)2 =

1

6
π.

So the area of the lune is
√
3

4
+
1

8
π − 1

6
π =

√
3

4
− 1

24
π.

1

11

2

√3
2

Note that the answer does not depend on the position of the lune on the semi-
circle.

20. (E) The largest base-9 three-digit number is 93 − 1 = 728 and the smallest
base-11 three-digit number is 112 = 121. There are 608 integers that satisfy
121 ≤ n ≤ 728, and 900 three-digit numbers altogether, so the probability is
608/900 ≈ 0.7.
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21. (D) The numbers of the three types of cookies must have a sum of six. Possible
sets of whole numbers whose sum is six are

0, 0, 6; 0, 1, 5; 0, 2, 4; 0, 3, 3; 1, 1, 4; 1, 2, 3; and 2, 2, 2.

Every ordering of each of these sets determines a different assortment of cookies.
There are 3 orders for each of the sets

0, 0, 6; 0, 3, 3; and 1, 1, 4.

There are 6 orders for each of the sets

0, 1, 5; 0, 2, 4; and 1, 2, 3.

There is only one order for 2, 2, 2. Therefore the total number of assortments of
six cookies is 3 · 3 + 3 · 6 + 1 = 28.

OR

Construct eight slots, six to place the cookies in and two to divide the cookies
by type. Let the number of chocolate chip cookies be the number of slots to
the left of the first divider, the number of oatmeal cookies be the number of
slots between the two dividers, and the number of peanut butter cookies be the
number of slots to the right of the second divider. For example, 111 | 11 | 1
represents three chocolate chip cookies, two oatmeal cookies, and one peanut
butter cookie. There are

(

8
2

)

= 28 ways to place the two dividers, so there are
28 ways to select the six cookies.

22. (B) We have EA = 5 and CH = 3. Triangles GCH and GEA are similar, so

GC

GE
=
3

5
and

CE

GE
=

GE −GC

GE
= 1− 3

5
=
2

5
.

Triangles GFE and CDE are similar, so

GF

8
=

CE

GE
=
5

2

and FG = 20.

OR

Place the figure in the coordinate plane with the origin at D, DA on the positive
x-axis, and DC on the positive y-axis. Then H = (3, 8) and A = (9, 0), so line
AG has the equation

y = −4
3
x+ 12.

Also, C = (0, 8) and E = (4, 0), so line EG has the equation

y = −2x+ 8.

The lines intersect at (−6, 20), so FG = 20.
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23. (C) The base row of the large equilateral triangle has 1001 triangles pointing
downward and 1002 pointing upward. This base row requires 3(1002) toothpicks
since the downward pointing triangles require no additional toothpicks. Each
succeeding row will require one less set of 3 toothpicks, so the total number of
toothpicks required is

3(1002 + 1001 + 1000 + · · ·+ 2 + 1) = 3 · 1002 · 1003
2

= 1, 507, 509.

OR

Create a table:

Number of Rows Number of Triangles Number of Toothpicks
in Base Row in All Rows

1 1 3
2 3 3 + 6
3 5 3 + 6 + 9
...

...
...

n 2n− 1 3(1 + 2 + · · ·+ n)

Thus
2003 = 2n− 1 so n = 1002.

The number of toothpicks is

3(1 + 2 + · · ·+ 1002) = 3(1002)(1003)
2

= 1, 507, 509.

24. (E) Let R1, . . ., R5 and B3, . . ., B6 denote the numbers on the red and blue
cards, respectively. Note that R4 and R5 divide evenly into only B4 and B5,
respectively. Thus the stack must be R4, B4, . . ., B5, R5, or the reverse. Since
R2 divides evenly into only B4 and B6, we must have R4, B4, R2, B6, . . ., B5,
R5, or the reverse. Since R3 divides evenly into only B3 and B6, the stack must
be R4, B4, R2, B6, R3, B3, R1, B5, R5, or the reverse. In either case, the sum
of the middle three cards is 12.

25. (B) Note that n = 100q + r = q + r + 99q. Hence q + r is divisible by 11 if and
only if n is divisible by 11. Since 10, 000 ≤ n ≤ 99, 999, there are

⌊

99999

11

⌋

−
⌊

9999

11

⌋

= 9090− 909 = 8181

such numbers.
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