In problem solving there are often certain tactics (heuristics) that tend to produce results. A heuristic is a method/action that is likely to lead to a solution. Those are derived from extensive experience of many problem solvers. It's a good habit of mind to try to come up with your own heuristics as we go along.

That a simpler problem (2) Establish a pattern.

Example 1a: Evaluate $\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)...\left(1 - \frac{1}{n-1}\right)\left(1 - \frac{1}{n}\right)$ where n is a natural number. N = $\{1, 2, 3, 4, \dots\}$

Number of Factors	Actual Factors Present	Overall Result
1	$(1-\frac{1}{2})$	1
2	$(1-\frac{1}{2})(1-\frac{1}{3})=\frac{1}{2}\cdot\frac{2}{3}=$	13
3	(1-1)(1-1)(1-4)=1.3.3.3	4

For n factors, the result is $\frac{1}{n+1}$ aiven n-1 factors, $\frac{1}{(n-1)+1}$ Based on the number pattern our conjecture for the answer is: $\frac{1}{n}$ How many factors are there? $\frac{n-1}{n}$ What is the answer if we have k terms?

Example 1b: Evaluate $\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{5}\right)...\left(1 - \frac{1}{n-1}\right)\left(1 - \frac{1}{n}\right)$ where n is a natural number.

1 $\left[-\frac{1}{3} = \frac{2}{3}\right]$ 2 $\left([-\frac{1}{3}\right)\left([-\frac{1}{4}] = \frac{2}{3} \cdot \frac{3}{4} = \frac{2}{4} = \frac{1}{2}$ 3 $\left([-\frac{1}{3}\right)\left([-\frac{1}{4}\right)\left([-\frac{1}{5}] = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} = \frac{2}{5}$ 4 $\left([-\frac{1}{3}\right)\left([-\frac{1}{4}\right)\left([-\frac{1}{5}] = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} = \frac{2}{6} = \frac{1}{3}$ Example 1c: Evaluate $\left(1 - \frac{1}{4}\right)\left([-\frac{1}{5}\right)\left([-\frac{1}{6}] = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} = \frac{2}{6} = \frac{1}{3}$ Pattern: result denom-rot fraction in the last factor.

Example 1c: Evaluate $\left(1 - \frac{1}{4}\right)\left([-\frac{1}{5}\right)\left([-\frac{1}{6}] = \frac{1}{3}\right)...\left([-\frac{1}{n-1}\right)\left([-\frac{1}{n}] = \frac{1}{n-1}\right)$ where n is a natural number.

Example 1d: Generalizing: Evaluate $\left(1-\frac{1}{a}\right)\left(1-\frac{1}{a+1}\right)\left(1-\frac{1}{a+2}\right)...\left(1-\frac{1}{n-1}\right)\left(1-\frac{1}{n}\right)$ where n is a natural number.

WW'. Example 2: Evaluate $\frac{8}{4} \cdot \frac{12}{8} \cdot \frac{16}{12} \cdot \dots \cdot \frac{4n+4}{4n} \cdot \dots \cdot \frac{2008}{2004}$ where n is a natural number.

Example 3:

Evaluate (a) 1+3+5+7+....+101

(b) 1+3+5+7+...+2n-1, where n is a natural number.