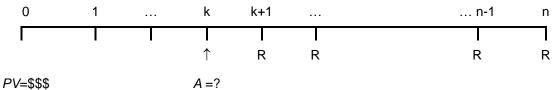

"It's all about drawing a timeline and using basic formulas."

- An **ordinary annuity** our usual annuities; compounding periods match payment periods and all payments are the same
- A general annuity when interest periods and payment intervals do not coincide; convert interest i, to match payments, R.

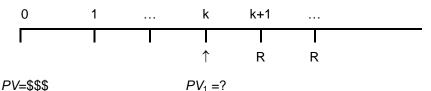
Mortgages are the most typical example, usually converting semi-annual compounding to match monthly payments

Annuity due - periodic payments fall at the beginning of a payment period
ex. rent (no new formula(s) needed; draw a timeline and use the usual formulas)



Deferred annuity - the first payment is made at some time later than the first interest period.
ex. "don't pay a cent until January 1st of next year!"
Typically, deferred annuities are handled two ways:

i) Determine PV_1 , then move it backwards on the timeline, $PV = PV_1(1+i)^{-n}$



ii) Determine the future value, A, at time k. A is the present value for an ordinary annuity; solve for R.

• **Perpetuity** - an annuity whose payments begin on a fixed date and continue forever; the compound interest earned in one period must be ≥ the payment.

There is no meaning as the amount, or future value, but there is definitely a present value; (draw a timeline and solve as a ∞ geometric series)

