Day 1: The Exponent Rules

By the end of the period you will:

- → Be re-familiarized with the exponent laws/rules
- → Apply the exponent rules to simplify expressions
- → Begin to recognize what makes a power...a power

EXPONENT

POWER

BASE

Expanded Form vs. Single Power Form

Expanded:

Single Power

2 x 2 x 2

 2^3

$$7 \times 7 \times 7 \times 7 \times 7 \times 7$$

7⁶

Exponent Laws

When multiplying exponents with the <u>same</u> base, keep the base the same and ADD the exponents together...

Product	Expanded Form	# of Factors	Single Powe
$3^5 \times 3^4$	$(3\times3\times3\times3\times3)\times(3\times3\times3\times3)$	9	3°
	= 3 ⁵⁺⁴		
$2^3 \times 2^2$	$(2\times2\times2)\times(2\times2)$	5	2 ⁵
	$=2^{3+2}$		

When dividing exponents with the <u>same base</u>, keep the base the same and <u>SUBTRACT</u> the exponents...

Product	Expanded Form	# of Factors	Single Power
$\frac{4^5}{4^3}$	$\frac{(\mathcal{A} \times \mathcal{A} \times \mathcal{A} \times 4 \times 4)}{(\mathcal{A} \times \mathcal{A} \times \mathcal{A})}$	2	4 ²
	$=4^{5-3}$		
$\frac{5^4}{5^2}$	$\frac{(\cancel{5} \times \cancel{5} \times 5 \times 5)}{(\cancel{5} \times \cancel{5})}$	2	5 ²
	= 5 ⁴⁻²		

When simplifying a power of a power, keep the base the same and MULTIPLY the exponents together...

Product Expanded Form # of Factors Single Power $(2^{3})^{4} (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2)$ $= 2^{3 \times 4}$ $(4^{2})^{3} (4 \times 4) \times (4 \times 4) \times (4 \times 4)$ $= 4^{6}$

$$=4^{2\times3}$$

A power only has ONE BASE. The base is the number or variable that the exponent is connected to.

Ex. State the base for each of the following...

$$|32b^{6}|$$

$$(2e)^{2}$$

Tricked you! When there is a bracket, it groups the number/variable and makes it ONE BASE. Therefore, the base is "2e"

Advanced: Applying the Exponent Law

Simplify the Following Expressions.

$$3^3 \times 3^6 = 3^9$$

$$\frac{6^8}{6^6} = 6^2$$

$$(5^5)^2 = 5^{10}$$

$$3a^3 \times 3a^6 = 9a^9$$

$$\left|\frac{16a^9}{4a^4}\right| = \left|$$

$$5(a^5)^2 = 5a^{10}$$

$$(5a^5)^2 = 25a^{10}$$

B rackets
E xponents
D ivide
M ultiply
A dd
S ubtract

$$(c^6 \times c^8) \times (c^{14} \div c^7) = c^{21}$$

$$(2a^3 \times 2a^2)^3 = 64a^{15}$$